
www.manaraa.com

The synchronous data
ow programming languageLUSTRE �N. Halbwachs, P. Caspi, P. RaymondIMAG/LGI - Grenoble D. PilaudVERILOG - GrenobleAbstractThis paper describes the language Lustre, which is a data
ow syn-chronous language, designed for programming reactive systems | suchas automatic control and monitoring systems | as well as for describ-ing hardware. The data
ow aspect of Lustre makes it very close tousual description tools in these domains (block-diagrams, networks ofoperators, dynamical samples-systems, etc: : :), and its synchronous in-terpretation makes it well suited for handling time in programs. More-over, this synchronous interpretation allows it to be compiled into ane�cient sequential program. Finally, the Lustre formalism is verysimilar to temporal logics. This allows the language to be used forboth writing programs and expressing program properties, which re-sults in an original program veri�cation methodology.1 IntroductionReactive systemsReactive systems have been de�ned as computing systems which continu-ously interact with a given physical environment, when this environment isunable to synchronize logically with the system (for instance it cannot wait).Response times of the system must then meet requirements induced by theenvironment. This class of systems has been proposed [HP85, Ber89] so asto distinguish them from transformational systems | i.e., classical programswhose data are available at their beginning, and which provide results whenterminating | and from interactive systems which interact continuouslywith environments that possess synchronization capabilities (for instance�This work has been partially supported by French Minist�ere de la Recherche withincontract \Informatique 88", and by PRC C3 (CNRS)1

www.manaraa.com

operating systems). Reactive systems apply mainly to automatic processcontrol and monitoring, and signal processing, | but also to systems suchas communication protocols and man-machine interfaces when required re-sponse times are very small. Generally, these systems share some importantfeatures:� Parallelism: First, their design must take into account the parallelinteraction between the system and its environment. Second, theirimplementation is quite often distributed for reasons of performance,fault tolerance, and functionality (communication protocols for in-stance). Moreover, it may be easier to imagine a system as comprisedof parallel modules cooperating to achieve a given behavior, even if itis to be implemented in a centralized way.� Time constraints : These include input frequencies and input-outputresponse times. As said above, these constraints are induced by theenvironment, and should be imperatively satis�ed. Therefore, theseshould be speci�ed, taken into account in the design, and veri�ed asan important item of the system's correctness.� Dependability : Most of these systems are highly critical ones, and thismay be their most important feature. Just think of a design errorin a nuclear plant control system, and in a commercial aircraft
ightcontrol system! This domain of application requires very careful designand veri�cation methods and it may be one of the domains whereformal methods should be used with higher priority; design methodsand tools that support formal methods should be chosen even if theseimply certain limitations.The synchronous approachIn our opinion, most programming tools used in designing reactive systemsare not satisfactory. Clearly, assembly languages do not, though they arewidely used for reasons of code e�ciency. Other methods include the useof classical languages for programming sequential tasks that cooperate andsynchronize using services provided by a real-time operating system, and theuse of parallel languages that provide their own real-time communicationservices. Even the later, which seems more promising, has been criticized[Ber89] since the services being provided are low level; this does not allowprograms to be easily designed and validated, while appears to be ratherexpensive at run time. 2

www.manaraa.com

Synchronous languages have been recently proposed in order to deal withthese problems: such languages provide \idealized" primitives allowing pro-grammers to think of their programs as reacting instantaneously to externalevents. Thus, each internal event of a program takes place at a known timewith respect to the history of external events. This feature, together withthe limitation to deterministic constructs, results in deterministic programsfrom both functional and temporal points of view. In practice, the syn-chronous hypothesis amounts to assuming that the program is able to reactto an external event, before any further event occurs. If it is possible tocheck that this hypothesis holds for given program and environment, thenthis ideal behavior represents a sensible abstraction. The pioneering workon Esterel has led to propose a general structure for the object code ofsynchronous programs: a �nite automaton whose transition consists of ex-ecuting a linear piece of code and corresponds to an elementary reactionof the program. Since the transition code has no loop, its execution timecan be quite accurately evaluated on a given machine; this enables us toaccurately bound the reaction time of the program, thus allowing the syn-chronous hypothesis to be checked.Synchronous languages include (see this issue)Esterel, Signal, Statecharts,Sml, and several hardware description languages [BL85].The data
ow approachOne method for reliable programming is to use high level languages, i.e.,languages that allow a natural expression of problems as programs. Withinthe domain of reactive programming, many people are used with automaticcontrol and electronic circuits; traditionally, these people model their sys-tems by means of networks of operators transforming
ows of data | gates,switches, analog devices |, and from a higher level, by means of booleanfunctions and transfer functions with block-diagram structures, and �nallyby means of systems of dynamical equations which capture the behaviorof these networks. Such formalisms look quite similar to what computerscientists call \data
ow" systems [Kah74, Gra82] (cf. Figure 1). Thereforedata
ow can be considered as a high level paradigm in that �eld. Further-more, as a basis of a high level programming language, it possesses severaladvantages:� It is a functional model with its subsequent mathematical cleanness,and particularly with no complex side e�ects. This makes it well3

www.manaraa.com

X = 2*Y + ZW = X + 1 YZ X2 +* 1 + WFigure 1: A data
ow description and its associated equationsadapted to formal veri�cation and safe program transformation, sincefunctional relations over data
ows may be seen as time invariant prop-erties. Also, reuse is made easier, which is an interesting feature forreliable programming concerns.� It is a parallel model, where any sequencing and synchronization con-straints arise from data dependencies. This is a nice feature whichallows the natural derivation of parallel implementations. It is also in-teresting to notice that, in the above domain, people were accustomedto parallelism, at much earlier times than in other areas in computerscience.Synchronous data
owIt may thus seem appealing to develop a data
ow approach to reactive pro-gramming. However, up to now data
ow has been thought of as essentiallyasynchronous, whereas a synchronous approach seems necessary to tacklethe problem of time, for instance by relating time with the index of data in
ows.This was the �rst concern of the Lustre [CPHP87] project which is re-ported here. It resulted in proposing primitives and structures which restrictdata
ow systems to only those that can be implemented as bounded memoryautomata-like programs in the sense of Esterel. The language, togetherwith programming examples, will be presented in Section 2. Then compilingand e�cient code generation matters will be discussed in Section 3.The second main concern of the project is to take advantage of theapproach in developing techniques of formal veri�cation (Section 4). Theidea is to consider Lustre as a speci�cation language as well, thanks to its4

www.manaraa.com

declarative aspect. It is then shown that the same compiler can be used asa tool for verifying program correctness with respect to such speci�cations.Section 5 presents several other current activities of the project, relatedto hardware and distributed implementations. Finally comparisons withexisting approaches are discussed.2 The LUSTRE language2.1 Flows and ClocksIn Lustre, any variable and expression denotes a
ow, i.e., a pair made of� a possibly in�nite sequence of values of a given type,� a clock, representing a sequence of times.A
ow takes the n-th value of its sequence of values at the n-th time ofits clock. Any program, or piece of program has a cyclic behavior, andthat cycle de�nes a sequence of times which is called the basic clock of theprogram: a
ow whose clock is the basic clock takes its n-th value at then-th execution cycle of the program. Other, slower, clocks can be de�ned,thanks to boolean-valued
ows: the clock de�ned by a boolean
ow is thesequence of times at which the
ow takes the value true . For instance table 1displays the time-scales de�ned by a
ow C whose clock is the basic clock,and by a
ow C0 whose clock is de�ned by C.basic time-scale 1 2 3 4 5 6 7 8C true false true true false true false trueC time-scale 1 2 3 4 5C0 false true false true trueC0 time-scale 1 2 3Table 1: Boolean
ows and clocksIt should be noticed that the clock concept is not necessarily bound tophysical time. As a matter of fact, the basic clock should be consideredas setting the minimal \grain" of time within which a program cannot dis-criminate external events, and which corresponds to its response time. If\real time" is required, it can be implemented as an input boolean
ow: for5

www.manaraa.com

instance a
ow whose true value indicates the occurrence of a \millisecond"signal. This point of view provides a multiform concept of time: \millisec-ond" becomes a time-scale of the program among others.2.2 Variables, Equations, Expressions, AssertionsVariables should be declared with their types, and variables which do notcorrespond to inputs should be given one and only one de�nition, in the formof equations. These are considered in a mathematical sense: the equation \X= E;" de�nes variable X as being identical to expression E. Both have thesame sequence of values and clock. However such an equation is oriented inthe sense that it de�nes X. The way it is used in other equations cannot giveit more properties than those which arise from its de�nition. This providesone important principle of the language, the substitution principle: X can besubstituted to E anywhere in the program and conversely. As a consequence,equations can be written in any order, and extra variables can be createdso as to give names to subexpressions, without changing the meaning of theprogram.Lustre has only few elementary basic types: boolean, integer, real, andone type constructor: tuple. However, complex types can be imported froma host language and handled as abstract types (A similar mechanism existsin Esterel).Constants are those of the basic types and those imported from the hostlanguage (for instance constants of imported types). Corresponding
owshave constant sequences of values and their clock is the basic one.Usual operators over basic types are available (arithmetic: +, -, *,/, div, mod ; boolean: and, or, not ; relational: =, <, <=, >, >= ;conditional: if then else) and functions can be imported from the hostlanguage. These are called data operators and only operate on operandssharing the same clock; they operate pointwise on the sequences of values oftheir operands. For instance, if X and Y are on the basic clock, and their se-quences of values are respectively (x1; x2; : : : ; xn; : : :) and (y1; y2; : : : ; yn; : : :),the expressionif X>0 then Y+1 else 0is a
ow on the basic clock whose n-th value for any integer n is:if xn > 0 then yn + 1 else 0Besides these operators, Lustre has four more which are called \tem-poral" operators, and which operate speci�cally on
ows:6

www.manaraa.com

� pre (\previous") acts as a memory: if (e1; e2; : : : ; en; : : :) is the se-quence of values of expression E, pre(E) has the same clock as E, andits sequence of values is (nil; e1; e2; : : : ; en�1; : : :), where nil representsan unde�ned value denoting an uninitialized memory.� -> (\followed by"): if E and F are expressions with the same clock,with respective sequences (e1; e2; : : : ; en; : : :) and (f1; f2; : : : ; fn; : : :),then E->F is an expression with the same clock as E and F, and whosesequence is (e1; f2; f3 : : : ; fn; : : :). In other words, E->F is always equalto F, but at the �rst time of its clock.Table 2 shows the e�ect of the last two operators:� when \samples" an expression according to a slower clock: if E is anexpression and B is a boolean expression with the same clock, thenE when B is an expression whose clock is de�ned by B, and whosesequence is extracted from the one of E by keeping only those valuesof indexes corresponding to true values in the sequence of B. In otherwords, it is the sequence of values of E when B is true .� current \interpolates" an expression on the clock immediately fasterthan its own. Let E be an expression whose clock is not the basicone, and let B be the boolean expression de�ning this clock. Thencurrent E has the same clock C that B has, and its value at any timeof this clock C, is the value of E at the last time when B was true .B false true false true false false true trueX x1 x2 x3 x4 x5 x6 x7 x8Y = X when B x2 x4 x7 x8Z = current Y nil x2 x2 x4 x4 x4 x7 x8Table 2: Sampling and interpolatingBesides being made of equations, the body of a Lustre program maycontain assertions. These generalize equations and consist of boolean ex-pressions that should be always true. Their primary use is to give to thecompiler indications in order to optimize the code when the environmentof the program possesses some known properties (see x 3.4). For instance,7

www.manaraa.com

if we know that two input events represented by boolean variables x and ynever occur at the same time, we shall write:assert not(x and y);Similarly, the assertionassert (true -> not(x and pre(x)));says that event x never occurs twice in a row. Note the initialization totrue, which prevents the occurrence of value nil, which is forbidden inassertions, clocks, and output sequences (cf. x3.1). Besides their use incode optimization, assertions play a important role in program veri�cation(cf. x4).2.3 Program structureA Lustre system of equations can be represented graphically as a networkof operators. For instance, the equationn = 0 -> pre(n) + 1;which de�nes a counter of basic clock cycles, corresponds to the network of�gure 2. This naturally suggests some notion of subroutine: a subnetworkcan be encapsulated as a new reusable operator which is called a node.A node declaration consists of an interface speci�cation | providing inputand output parameters with their types and possibly their clocks | optionalinternal variables declarations, and a body made of equations and assertionsde�ning outputs and internal variables as a function of inputs.n0prepre+ ->1 Figure 2: Counter network8

www.manaraa.com

For instance, the following node de�nes a general purpose counter, hav-ing as inputs an initial-and-reset value, an increment value, and a resetevent: node COUNTER(val init, val incr: int; reset: bool) returns (n: int);letn = val init -> if reset then val init else pre(n) + val incr;tel.Such a node can be functionally instancied in any expression. For instanceeven = COUNTER(0,2,false);modulo5 = COUNTER(0,1,pre(modulo5)=4);de�ne the sequence of even numbers and the cyclic sequence of modulo 5numbers, over the basic clock.Similarly, if gamma is an acceleration expressed in meter=second2, andits clock's rate is onepersecond, one could havespeed = COUNTER(0,gamma,false);position = COUNTER(0,speed,false);According to the substitution principle, this is equivalent to:position = COUNTER(0,COUNTER(0,gamma,false),false);A node may have several outputs; in that case, the output is a tuple. Forinstancenode D_INTEGRATOR(gamma: int) returns(speed,position:int);let speed = COUNTER(0,gamma,false);position = COUNTER(0,speed,false);tel.is instancied as(v,x) = D_INTEGRATOR(g);Concerning clocks, the basic clock of a node is de�ned by its inputs, soas to be consistent with the data
ow point of view. For instance, expression:COUNTER((0,1,false) when B)9

www.manaraa.com

counts only when B is true . In the example, operator when applies to thetuple (0,1,false)1. Table 3 shows the result of the expression, and the dif-ference with expression (COUNTER(0,1,false)) when B , where samplingapplies to the output of the node instead of its inputs.B true false true false true(0,1,false) when B (0,1,false) (0,1,false) (0,1,false)COUNTER((0,1,false) when B) 0 1 2COUNTER(0,1,false) 0 1 2 3 4(COUNTER(0,1,false)) when B 0 2 4Table 3: Nodes and clocksThis example also stresses the interest of clocks in reuse; had clocks notbeen available, the only way of getting the same e�ect would have requiredto modify the node by adding a \do-nothing" input.A node may admit input parameters with distinct clocks. Then thefaster one is the basic clock of the node, and all other clocks must be in theinput declaration list. In the following example:node N (millisecond:bool; (x:int ; y:bool) when millisecond) returns ...the basic clock of the node is the one of millisecond, and the clock of xand y is the one de�ned by millisecond.Outputs of a node may have clocks di�erent from its basic clock. Thenthese clocks should be visible from the outside of the node. Note also thatthese clocks are certainly slower than the basic one.2.4 Some programming examplesLinear systemsTranslating sampled linear systems into Lustre programs is quite an obvi-ous task: if systems are expressed in z-transform equations, it amounts totranslating the z�1 operator into 0.0 -> pre(). For instance, consider the2nd order �lter:H(z) = az2 + bz + cz2 + dz + e1This is equivalent to COUNTER(0 when B, 1 when B, false when B)10

www.manaraa.com

The output y = H(z)x can be written:y = ax+ (bx� dy)z�1 + (cx� ey)z�2and yields the following program:const a,b,c,d,e: real.node SECOND_ORDER(x: real) returns (y: real);var u,v: real;lety = a*x + (0.->pre(u));u = b*x - d*y + (0.->pre(v));v = c*x -e*y;tel.Furthermore, clocks allow an easy extension to multiply sampled systems.Non-linear and time-varying systemsLetting identi�ers a,b,c,d,e be parameters of the SECOND ORDER node, in-stead of constants, yields a time-varying �lter. Non-linear systems are alsoeasy to describe. For instance:y = rho*cos(theta0 -> pre(theta));Logical systemsFrom the previous discussion, data
ow programs of signal processing sys-tems are very close to their speci�cation in terms of systems of dynamicalequations. However many systems have an important logical component,and some of them, for instance monitoring systems, are essentially logicalsystems. Such systems are most often described in terms of automata, par-allel automata (Statecharts for instance), and Petri nets, i.e., imperativeformalisms which describe states and transitions between states. The ques-tion about the adequacy of data
ow paradigms to provide easy descriptionsof such systems should therefore be carefully checked. The following exam-ples are intended to show that these paradigms may allow easy, incrementaland modular descriptions of logical systems.In this subsection we shall consider three versions of a \watchdog", i.e., adevice that monitors response times. The �rst version receives three events:11

www.manaraa.com

set and reset commands, and deadline occurrence. The output is analarm that must be raised whenever a deadline occurs and the last receivedcommand was a set.As usual, events are represented by boolean variables whose value truedenotes the presence of an event. The watchdog will be a Lustre node hav-ing three boolean inputs set, reset and deadline and emitting a booleanoutput alarm. As the order of equations is unimportant, we begin by de�n-ing the output: alarm is true when deadline is true and the last truecommand is set. Let is_set be a local boolean variable expressing thelatter condition. Then, we can write:alarm = deadline and is_set;It remains to de�ne is_set, which becomes true any time set is true , andfalse any time reset is true . Initially, it is true if set is true and falseotherwise:is_set = set -> if set then true else if reset then false else pre(is_set);We can furthermore assume that set and reset commands never take placeat the same time, which can be expressed by an assertion. The full programis: node WD1 (set, reset, deadline: bool) returns (alarm: bool);var is_set: bool;letalarm = deadline and is_set;is_set = set -> if set then trueelse if reset then false else pre(is_set);assert not(set and reset);tel.Let us consider now a second version which receives the same commands,but raises the alarm when no reset has occurred for a given time since thelast set, this time being given as a number of basic clock cycles. This newprogram reuses node WD1, by providing it with an appropriate deadlineparameter: on reception of a set event, a register is initialized, which isthen decremented. Deadline occurs when the register value reaches zero; itis built from a general purpose node EDGE which returns true at each risingedge of its input: 12

www.manaraa.com

node EDGE (b: bool) returns (edge: bool);letedge = false -> (b and not pre(b));tel.node WD2 (set, reset: bool; delay: int) returns (alarm: bool);var remain: int; deadline: bool;letalarm = WD1(set, reset, deadline);deadline = false -> EDGE(remain = 0);remain = if set then delayelse if pre(remain)>0 then pre(remain)-1else pre(remain);tel.Assume now that the delay is expressed according to a given time-scale,i.e. as a number of occurrences of an event time_unit. We just have to callWD2 with an appropriate clock: WD2 must catch any time units time_unit,any commands, and must be properly initialized so that alarm never yieldsnil: node WD3 (set, reset, time_unit: bool; delay: int) returns (alarm: bool);var clock: bool;letalarm = current(WD2((set,reset,delay) when clock));clock = true -> (set or reset or time_unit);tel.Coming back to the question raised at the beginning of the section, wecan see that programs have been written without referring to transitionsbetween states, but rather by describing states in terms of state variables,and by stating the strongest invariant property of each state variable. Then,all state variables will evolve in parallel, thus recreating the global state ofthe system. It has been shown in [BFH90b] that any �nite state machinecan be described by a boolean Lustre program.Mixed logical and signal processing systemsFinally, mixing signal processing and logical systems is quite an easy task:Signal processing parts provide logical ones with boolean expressions byusing relational operators, and conversely, logical components control signal
ows by means of conditional operators: if then else, when and current.13

www.manaraa.com

3 The Lustre compilerLet us describe now the main techniques used in the Lustre-V2 compiler[Pla88]. This prototype compiler has been written in Le-Lisp by John Plaice.3.1 Static veri�cationsStatic well-formedness checking is clearly an important issue within theframework of reliable programming, and aims at avoiding the overhead ofdynamic checks at run time. Besides classical type checking, the main checksperformed by the compiler are:� De�nition checking: any local and output variable should have oneand only one equational de�nition.� Absence of recursive node call: in view of obtaining automata-likeexecutable programs, Lustre allows up to now only static networksto be described. The problem of structuring recursive calls so that theabove property is maintained, has not yet been investigated.� Clock consistency, which will be more intensively discussed below.� Absence of uninitialized expressions (yielding nil values). Such ex-pressions are accepted as far as these do not concern clocks, outputs,and assertions.� Absence of cyclic de�nitions: any cycle in the network should containat least one pre operator. In the sense of [Kah74] an equation suchthat: X = 3*X + 1 has a meaning which is the least solution withrespect to the pre�x ordering of sequences; in this case, the solutionfor X is the empty sequence, and it can be interpreted as a deadlock.It is therefore rejected. Note also that Lustre also rejects structuraldeadlocks which are not true ones, such that:X = if C then Y else Z;Y = if C then Z else X;The reason is that the analysis of such networks is undecidable, ingeneral . 14

www.manaraa.com

Let us discuss now the clock calculus which represents an original as-pect of Lustre with respect to data
ow languages. The following programillustrates the reason for such a calculus:b = true -> not pre b;y = x + (x when b);In the second equation, a data operator combines two
ows of distinctclocks. According to standard data
ow philosophy, such a program has ameaning. However, it is easy to see that the computation of the 2nth valueof y needs both the 2nth and the nth values of x. Since a reactive systemmay be assumed to run for ever, its required memory will certainly over
ow.Such a program could not be compiled into a bounded memory object code,not to speak of the physical incoherency consisting of adding something attime n with something at time 2n.The clock calculus consists of associating a clock with each expressionof the program, and of checking that any operator applies to appropriatelyclocked operands:� any primitive operator with more than one argument applies to operandssharing the \same" clock;� the clock of any operand of a current operator is not the basic clockof the node it belongs to2;� the clocks of a node operands should obey the clocks requirementsstated in the node de�nition header.Let us de�ne here what we mean by \the same clock". Ideally, it couldmean the same boolean
ow, but this may require semantical analysis whichare undecidable in general. Thus the compiler uses a more restricted notionof equality: two boolean expressions de�ne the same clock if and only ifthese can be uni�ed by means of syntactical substitutions. Consider theexample:x = a when (y>z);y = b+c;u = d when (b+c>z);v = e when (z<y);2In contrast with Signal, Lustre does not allow basic clock time intervals to be splitinto smaller ones. 15

www.manaraa.com

two copiesa xyFigure 3: A cyclic callx and u share the same clock, which is considered to be distinct from theclock of v.The rules of the clock calculus are formally described in [CPHP87, Pla88].3.2 Node expansionThe Lustre compiler produces purely sequential code. This raises the ques-tion of compiling separatedly nodes which are used in other nodes. Thefollowing example shows this cannot be easily done for Lustre:node two_copies(a, b: int) returns (x, y: int);let x = a ; y = b ; end.Clearly, there are two possible sequential codes for a basic cycle of thisnode, either x:=a;y:=b; or y:=b;x:=a;But the choice between those two programs may depend on the way thenode is used within another node; for instance:(x,y) = two_copies(a,x);corresponding to �gure 3. In this case, only the former program is correct.Thus, before compiling a program, the compiler �rst expands recursivelyall the nodes called by that program, i.e., formal parameters are substitutedwith actual ones, local variables are given an unique name (so as to distin-guish that node call from other instances of the same node) and then thecalled node body is inserted into the calling node body. The code generationstep will then start from a \
at" node which does not call any other node3.3However, we shall see in x 5.1 that some separate compiling technique can also apply.16

www.manaraa.com

3.3 Single-loop codeAn obvious way of associating an imperative program with a Lustre nodeconsists of constructing an in�nite loop whose body implements the inputsto outputs transformation performed at any basic cycle of the node. This isdone by:� choosing variables to be computed (the output ones and the least pos-sible number of local ones, which implement either memories or tem-porary bu�ers),� de�ning the actions which update these variables,� and choosing an ordering of these actions, according to the dependen-cies between variables induced by the network structure of the node.As an example, let us consider a modi�ed version of the watchdog WD3:node WD4 (set,reset,u_tps:bool; delay: int) returns (alarm:bool);var is_set: bool; remain:int;letalarm = is_set and (remain = 0) and pre(remain)>0;is_set = false -> if set then trueelse if reset then falseelse pre(is_set);remain = 0 -> if set then delayelse if u_tps and pre(remain)>0then pre(remain)-1else pre(remain);assert not(set and reset);tel.The single-loop body, which is executed at each program reaction, looks like:if _init then % first cycle %is_set := false; remain := 0; alarm := false; _init := falseelse % other cycles %if set then is_set:= true; remain:= delayelseif reset then is_set:= false endif;if u_tps and (_pre_remain>0) then remain := _pre_remain-1 endif;endif 17

www.manaraa.com

alarm := is_set and (remain=0) and (_pre_remain>0);endifwrite(alarm); _pre_remain := remain;Remarks� The compiler has de�ned auxiliary variables: the variable init |which is assumed to be initialized to true and is used to implementthe operator -> | and the memory variable pre remain. Note thatthe expression pre(is set) did not result in the creation of a memoryvariable since the compiler found a way to avoid it.� Although it is easy to �nd an ordering of actions which meets thedependency relations between variables (static checks described aboveensure that such an order exists), the choice of a \good" order isquite di�cult: particularly, the order according to which conditionalstatements are opened and closed is critical with respect to code length.� The code speed could be improved. Note for instance that at anycycle the program tests whether this is the �rst one or not, and thisis particularly awkward. A solution consists of using more complexcontrol structures than the single-loop structure. This is discussed inthe following section.3.4 Automaton-like codeThe search for more complex control structures is borrowed from the com-piling technique of Esterel and is based on the following remarks:� The classical concept of control of imperative programs is representedin Lustre by means of boolean variables acting over conditional andclock handling operators.� If a condition or a clock depends on values of a boolean variable com-puted at previous cycles (by means of an expression like pre(B) orcurrent(B)) the code of the actual cycle could be made simpler ifthat value could be assumed to be known. One could then distinguishthe code to be executed according to that value.The synthesis of the control structure consists of choosing a set of statevariables of boolean type, whose values are expected to in
uence the code18

www.manaraa.com

of future cycles. This set of variables is called the state of the program andit takes only a �nite set of values. For each possible value of the state, onede�nes the sequential code which would be executed during a cycle if thestate of the variables had the above values just before the execution of thecycle. Hence, starting from a given state and executing the correspondingcode would result in computing the next state, and be ready for the executionof the next cycle. Finally, a static reachability analysis can be performedso as to delete state values and transitions which cannot be reached fromthe initial state (As a matter of fact, this reachability analysis is done whilegenerating state values and transitions, so as to avoid generating uselessitems). The result is a �nite state automaton, whose transitions are labeledwith the code of the corresponding reaction.State variables can be chosen in several ways among the following:� boolean expressions resulting from pre and current operators,� auxiliary variables like init C, associated with some clock C whosevalue is true at the �rst clock cycle and then false, and which allowthe evaluation of -> operators.This control synthesis is illustrated on the watchdog example WD4 (cf. x 3.3):The chosen state variables are pre(is set) and init. Then:1. The �rst cycle yields pre(is set)=nil and init=true. Let S0 bethis initial state. Since init=true in this state, the value of all ->operators is the one of their �rst operand. Thus, is set=false, andremain=0. Elementary boolean calculus yields alarm=false. Fur-thermore, since is set evaluates to false, this will be the value ofpre(is set) at the next state. The next state, S1, is then pre(is set)=falseand init=false. State S0 code looks like:S0 : remain := 0;alarm := false;pre_remain := remain;goto S1;2. In state S1, since pre(is set) value is false, is set evaluates to trueif and only if the input set value is true. Let S2 be the state wherepre(is set) is true and init is false. The code for state S1 is:19

www.manaraa.com

S1 : if set thenremain := delay;alarm := (remain = 0) and (pre_remain > 0);pre_remain := remain;goto S2;elseremain := if u_tps and pre_remain > 0 then pre_remain-1else pre_remain;alarm := false;pre_remain := remain;goto S1;endif3. The code of state S2 (pre(is set) is true and init is false), is asfollows:S2 : if set thenremain := delay;alarm := (remain = 0) and (pre_remain > 0);pre_remain := remain;goto S2;elseif reset thenremain := if u_tps and pre_remain > 0 then pre_remain-1else pre_remain;alarm := false;pre_remain := remain;goto S1;elseremain := if u_tps and pre_remain > 0 then pre_remain-1else pre_remain;alarm := (remain = 0) and (pre_remain > 0);pre_remain := remain;goto S2;endifendifAll reachable states being processed, this ends the code generation. Figure 4display the resulting automaton. 20

www.manaraa.com

S2S1S0 : resetset: set resetFigure 4: The watchdog control automatonRemarks� The obtained transition codes are much simpler than the single-loopcode, particularly for S0 and S1 codes. This reduction may be evenmore impressive for larger programs.� In contrast, the overall length of the code may become very large.That is why, in practice, an action code table is built which uniquelyidenti�es actions that may belong to several transitions, and transitioncodes refer to actions by means of their indexes in the table.� Boolean expressions depending on non boolean variables, which areneeded for computing state variables (integer comparison for instance)are handled as inputs by means of tests on their value.� This technique allows assertions to be fully taken into account. As-sertions are computed in the same way as state variables, and anybranch yielding a false assertion is deleted. A state whose total codehas been deleted is then declared unreachable, and branches alreadycomputed which lead to that state are recursively deleted. It shouldbe noticed that assertions may increase the number of state variablesand reachable states, as well as increase code length by inducing extratests.� In contrast with Esterel automata, the obtained Lustre automataare often far from being minimal (this question will be further dis-21

www.manaraa.com

cussed at x 5.1). This entails a need for minimization.3.5 The Esterel/Lustre environmentAutomata produced by the Lustre compiler are expressed in the oc format[PS87], which is also used by the Esterel compiler. Several common toolstake this format as input:Code generators: Translators towards C, Le-Lisp and ADA languageshave been designed by the Esterel team. They produce the proce-dure which implements the code corresponding to a transition of theautomaton.Automaton minimizer: The Aldebaran [Fer88] minimizer has been in-terfaced with oc. It allows minimal equivalent automata to be ob-tained in oc, and this is particularly useful in the case of Lustre.Interfaces with proof tools: Automata are a common basic model inmany analysis and veri�cation tools for parallel systems. It was there-fore appealing to experiment with the use of such tools operating on ocautomata. Thus, oc has been interfaced with Auto [Ver86]. Someexperiments have also been performed with Emc [CES86] and Xe-sar [RRSV87]. However, we shall see in Section 4 other proof tech-niques which apply speci�cally to Lustre.Display tools: The oc language has been designed for internal code rep-resentation, and it thus lacks of readability. For checks and debuggingpurposes, translators towards readable representations, and graphicdisplay based on the Autograph [RS89] code, have been developed.4 Veri�cationAs noted in the introduction, reactive systems often concern critical ap-plications, and thus program veri�cation is a key issue. However, manypractitioners in the �eld are skeptical with the use of formal veri�cationmethods, and convincing arguments need to be provided in order to supportour claim that indeed, such methods are of practical interest. This is theobject of the following discussion.The research on program veri�cation which started in the early seven-ties intended to provide complete proofs of very general programs. Though22

www.manaraa.com

this work has led to important contributions concerning programming tech-niques and language design, one should admit that its use in practice isvery limited. However, our goal concerning reactive systems may be lessambitious. Almost always, the safety of a critical application does not de-pend on the total correctness of its control program, but rather on an oftensmall set of properties that the program should ful�ll. For instance, theoccurrence of a critical situation should raise an alarm within a given de-lay. From our experience, the proof of such properties can often be handledwithin the framework of simple decidable theories, as these properties sel-dom depend on numerical relations and computations. Furthermore, mostof these properties are \safety" properties which state that a given situa-tion should never appear, or that a given statement should always hold, incontrast with \liveness" properties which state that a given situation shouldeventually appear in the future. For instance, a relevant question is not thata train will eventually stop, but that it never crosses a red light. This is animportant remark as proof techniques for safety properties are known to bemuch simpler than for liveness properties:� A safety property can be veri�ed by simply checking properties ofreachable states, without taking into account the transition relation(it is used only for constructing the reachable states). This allows theuse of very e�cient methods based on reachability [Hol87, CVWY90].� A safety property can be checked on an abstraction of the actual pro-gram. Informally, if a safety property holds for a program, it alsoholds for programs whose set of behaviors is a subset of the initialone. Thus it is possible to abstract programs by ignoring details, forinstance numerical computations; their set of behaviors will becomelarger and properties that hold on these abstractions will also hold onthe actual programs.� Safety properties can be checked modularly. Properties of submodulescan be combined so as to derive a property of the whole module. Thisallows proof complexities to be reduced, thanks to modular decompo-sition according to a program structure.In view of this discussion, we will propose methods for specifying and check-ing simple safety properties about Lustre programs.23

www.manaraa.com

4.1 Speci�cation of safety propertiesMany formalisms have been proposed in order to express properties of realtime parallel programs. Two main approaches can be distinguished: thosebased on temporal logics [Pnu77, MM84], and those based on automatatheory (Petri nets, Statecharts, timed graphs [ACD90] and process cal-culi [Mil83]). Such formalisms should clearly allow any interesting propertyto be expressed, but should also provide an easy and readable expression forit; proving a certain property is of poor interest if one cannot be convincedthat it is actually the desired property of the system.This led us to investigate if it were possible to take advantage of Lustre'sdeclarative aspect, so as to use it for expressing properties of Lustre pro-grams [HPOG89]. A positive answer is based on the following considera-tions:� Lustre can be considered as a subset of a temporal logic [PH88,BFH90b]. Our proposal is then to express any temporal property Pby a boolean expression B, such that P holds if and only if expressionB is always true during any execution path of the program. Accordingto [BFH90b], any safety property can be expressed in such a way.� The above proposal is easily implementable by using the assertionmechanism of Lustre: Lustre assertions are already a means ofexpressing properties of a program's environment.� The use of a programming language for expressing both programs andtheir properties is interesting since all the structuring facilities of thelanguage become available for the sake of readability and expressive-ness. For instance, as we will show, the node concept will allow theuser to de�ne its own temporal operators.Let us show here how some useful non trivial temporal operators can beexpressed as Lustre nodes. Consider the following property:\any occurrence of a critical situation must be followed by analarm within a �ve seconds delay"Such a property relates three events: the critical situation occurrence, thealarm, and the deadline. The latter can be provided externally as well as itcan easily be expressed in Lustre. A general pattern for this property isthe following one: 24

www.manaraa.com

\Any occurrence of event A is followed by an occurrence of eventB before the next occurrence of event C"However, this formulation is not directly translatable into Lustre asit refers to what happens in the future following an A occurrence, whileLustre only allows references to the past with respect to the current instant.That is why we �rst translate it into the equivalent past expression:\Any time C occurs, either A has never occurred previously, orB has occurred since the last occurrence of A."Let us de�ne a node, taking three boolean input parameters A, B, C, andreturning a boolean output X such that such that X is always true if andonly if the property holds:node onceBfromAtoC(A,B,C: bool) returns (X: bool);letX = implies(C, never(A) or since(B,A));telThe equation de�ning X uses three auxiliary nodes:� The nodes implies implements the ordinary logical implication:node implies(A, B: bool) returns (AimpliesB: bool);let AimpliesB = not A or B; tel.� The node never returns the value true as long as its input has neverbeen equal to true. Then it returns false for ever:node never(B: bool) returns (neverB: bool);letneverB = (not B) -> (not B and pre(neverB));tel.� Finally, the node since has two inputs and it returns true if and onlyif, either its second input has still not been true, or its �rst input hasbeen true at least once since the last true value of the second input:25

www.manaraa.com

node since(X,Y: bool) returns (XsinceY: bool);letXsinceY = if Y then X else (true -> X or pre(XsinceY));tel.A realistic example has been studied in [Glo89]: Most critical propertiesof a nuclear plant monitoring program have been expressed in Lustre,thanks to a small set of general purpose temporal operators similar toonceBfromAtoC, never or since.4.2 Veri�cationThe proposed veri�cation method is very similar to \model checking" [CES86,RRSV87]: �rst, the state graph of the program is built (this assumes obvi-ously a �nite number of states), and then each property is checked on thisstate graph. The critical issue in this approach is clearly the number ofstates which can be very large for realistic programs. We shall see that therestriction to safety properties, and the expression of properties in the samelanguage as the program may help in solving this problem.In the Lustre case, a state graph already exists corresponding to thecontrol automaton built by the compiler. This graph is an abstraction ofthe actual state graph since it expresses only the control and ignores manydetails concerning non boolean variables, and boolean ones which do notin
uence that control. As noticed above, if properties to be checked dependessentially on booleans taken into account in the control graph, and if theseproperties are safety ones, such an abstraction is a sensible one for checkingpurposes and yields in general much smaller graphs.An important observation for decreasing the total graph size consistsof taking into account the property to be checked when building the stategraph. In the case of Lustre this is easily achieved since the same languageapplies to properties and programs: in order to prove that an expression Bis an invariant of the program P , we build a new program P 0 made of thebody of P and of the system of equations de�ning B, and whose only outputis B (cf. Figure 5). Since the compiler is then requested to only computeB, it will only take into account the part of the program which concernsthat computation, and this can be expected to yield a smaller graph. Giventhat graph, verifying the property corresponds to check that in none of thestates, the code performs an assignment of the output to false.26

www.manaraa.com

BP'PFigure 5: Veri�cation programA third issue in reducing the size of the graph consists of using assertionsfor expressing assumptions when the property to be checked is suspected tohold only on these assumptions. Assertions are also useful for expressingproperties of numbers which otherwise would be ignored by the compiler.For instance, if a program uses numerical tests such as X<=Z and Y<=Z, theassertion:assert not(X<=Y and Y<=Z and not X<=Z);prevents the compiler from generating states satisfying Z<X�Y�Z, which ofcourse would not be reachable by the actual program.As an example, let us consider the following general purpose node4,which represents a switch: its output alternates from true to false accordingto input events ON and OFF; a third input de�nes its initial value. A �rstversion of this node could be:node SWITCH_1(ON, OFF, INIT: bool) returns (STATE: bool);letSTATE = INIT -> if ON then trueelse if OFF then falseelse pre(STATE);tel.However, this version has a
aw: in the call4Such a node could have been used in de�ning the variable is set in the CG1 (cf. x 2.4)version of watch-dogs. 27

www.manaraa.com

state = SWITCH_1(button, button, init)the output does not change each time the button is pushed, as we mightexpect. Thus a more general version should take into account the previousSTATE when checking the inputs ON and OFF:node SWITCH(ON, OFF, INIT: bool) returns (STATE: bool);letSTATE = INIT -> if ON and not pre(STATE) then trueelse if OFF and pre(STATE) then falseelse pre(STATE);tel.We could wish to verify that this generalization is correct, in the sensethat both versions behave in the same way as soon as the inputs ON andOFF are never true at the same time. This is achieved by constructing acomparison node which calls both nodes with same inputs and comparestheir outputs, under the assumption that ON and OFF inputs are exclusive(cf. Fig. 6):node COMPARE(ON, OFF, INIT: bool) returns (OK: bool);var state, state_1 : bool;letstate = SWITCH(ON, OFF, INIT);state_1 = SWITCH_1(ON, OFF, INIT);OK = (state = state_1);assert not(ON and OFF);tel.Compiling this node yields a �ve states automaton, each transition ofwhich assigns the value true to the output OK.The last way to tackle the state explosion problem ismodular veri�cation.Having to prove that an expression B is always true during the execution ofa program P, calling a node Q (cf. Fig. 7.a), the idea is to decompose theproof into a sub-proof concerning Q, and a sub-proof concerning P withoutQ: � Find (by intuition) a property of Q, i.e., an expression C on the in-put/output parameters of Q, and prove that C is always true duringany execution of Q. 28

www.manaraa.com

SWITCH 1 =SWITCH OKOFFONINIT
Figure 6: Assumption-dependent equivalence of programsQQ assert C(b)(a)P PFigure 7: Modular veri�cation� Now, consider Q as being part of the environment of P, i.e., replacein P the call to Q by the assertion assert C. Then try to prove theinvariance of B on the modi�ed program (cf. Fig. 7.b).An example making use of this modular decomposition may be found in [HLR92].A prototype veri�cation tool called Lesar (by analogy with the Cesar fam-ily of model checkers) has been implemented: given a program with a singleboolean output, it goes through the states and checks that the output isnever assigned false. It has been used to check the above mentioned nuclearplant control system [Glo89]. Though this program used computations on29

www.manaraa.com

real numbers, the state graphs it needed to build appeared to be quite small(up to 1000 states).Of course, the validity of the proof relies on the satisfaction of the syn-chrony hypothesis: All the proof is performed \inside" the synchronousmodel, and has nothing to do with performance analysis. As mentioned be-fore, checking the validity of the synchrony hypothesis amounts to evaluatethe maximum reaction time of the program on a given machine.5 Current activities5.1 The next compiler versionIn section 3, the Lustre-V2 compiler currently available was described.However, from experiments conducted with this version, some serious draw-backs have been identi�ed, and an improved version is currently being de-signed. We brie
y discuss here the main trends adopted in this new design.Automata minimization: As indicated above, automata provided by thecurrent compiler are far from being minimal, while this is not the case withEsterel generated automata. The suspected reason for this may be thefollowing one: Esterel is an imperative language o�ering powerful controlstructures (sequencing, interruptions, : : :). Furthermore, it is a mediumto large grain parallel language in the sense that its parallel construct isan explicit one, and its use may be tightly controlled by a programmer5.This allows \good programming" rules to be stated which lead to minimalautomata. On the contrary, control in Lustre is hidden as it results fromdata dependencies, and Lustre is a �ne grain parallel language in the sensethat any expression is a potentially parallel construct. Thus minor changesin a program text may induce large variations in the automaton size, andthough some causes of state explosion have been identi�ed, these cannot beeasily synthesized as sensible programming rules. The problem of e�cientlycompiling Lustre is therefore intrinsically di�cult. Several solutions arecurrently investigated:� A posteriori minimization: The use of an automaton minimizer suchthat Aldebaran (cf. x 3.5) which has already been interfaced so as to5Though the main ESTEREL assumption is that the synchronous product of automatalimits state explosion with respect to an asynchronous product, it still may be the maincause of state growth. 30

www.manaraa.com

process oc automata, is a low cost solution. But it applies only aftera successful automaton generation, and this cannot be the case whena state explosion occurs.� On the
y minimization: It is based on an analysis of state explosion.The main reason seems to be that Lustre variables are de�ned dur-ing the whole program execution, without taking much care of theire�ective use. Although this is a nice feature of the language from aprogrammer's point of view, it leads the compiler to distinguish stateswhich di�er only on values that have no in
uence on the present andfuture sequence of outputs. This suggests a \demand driven" stategeneration strategy, where states are created if and only if their in
u-ence on the input output behavior of the program is asserted [BFH90a].This strategy has been successfully implemented.� Source code optimization: As mentioned above, some rules are knownwhich could reduce the automaton size, but cannot be sensibly edictedas programming rules. The idea is then to take advantage of thelarge versatility of Lustre programs which is due to its mathematicalaspect (for instance the de�nition principle) so as to use these rulesas optimizing rules. There are experiments being carried on in thisdirection as well.Transition code size: Besides the automaton size, it happens that thecodes of transitions become exceedingly large. This results from an inade-quacy of the scheduling algorithm which produces that sequential code. Oneof its tasks consists of transforming conditional expressions into conditionalstatements and the order according to which tests are opened and closedappears to be critical with respect to code size (cf. x 3.3). Heuristics arebeing investigated so as to solve this problem.Modular compiler: It may also happen that a minimal automaton of aprogram still remains very large. This happens when the program is madeof many quasi-independent parts, and then its number of states become aslarge as the product of state numbers of the parts. A good solution in thiscase would consist of generating an automaton for each part and then oflinking together these automata. This raises two problems. First, it hasbeen noted (x 3.2) that modularly compiling pieces of Lustre programs isin general impossible. However [Ray88] proposed a method for identifying31

www.manaraa.com

in a program those pieces that can be compiled separately. Second, thismay result in a signi�cant decrease of the code length, but at the expense ofexecution time. Although the method has not yet been implemented, it isforeseen that it should keep under the programmer's control, so as to reacha satisfactory balance between code length and execution time.5.2 Distributed programmingUp to now, the only execution scheme considered for Lustre programs isa purely sequential one. This does not seem very consistent with the highlyparallel aspect of the language and with the fact that most parallel languagessuch thatOccam andADA have parallel and concurrent execution schemes.There can be at least two reasons for that discrepancy:� Parallelism in Lustre is intended towards expressiveness and ade-quacy with the culture of control systems engineers, and this is inde-pendent of any execution scheme.� In contrast with the abovementioned languages, parallelism in Lustreis a �ne grain one, and its concurrent execution would be rather in-e�cient. On the contrary, we have seen that very e�cient sequentialcodes (with respect to execution time) can be generated, and further-more, sequential execution allows the transition time to be accuratelybounded.However, many control and monitoring systems which constitute themain application domain of Lustre, are distributed systems for severalreasons: performances, fault tolerance, location of sensors and actuators,etc: : :and these systems are most often programmed separately. This maynot be a bad solution, as it may correspond to a modular decomposition ofsystems, but it frequently raises di�cult debugging problems, and an overallvalidation of such systems is usually impossible.An alternative method can be based on an automated tool producing dis-tributed code from Lustre programs and user-provided distribution com-mands (for instance, \compute variable X on location L1"). This would allowa whole application to be programmed in Lustre without taking care ofdistribution problems, and then, this application could be easily debuggedand validated using standard Lustre methods. Provided the automati-cally produced distributed program preserves Lustre semantics, it can be32

www.manaraa.com

expected that any debugging and validation performed on the centralizedprogram will also hold for the distributed one.Such a tool, called Oc2Rep, is described in [BCP88], and has beenimplemented. Given an oc program and a set of distribution commands,it automatically produces several oc programs which communicate throughFIFO queues thanks to statements such that:put_type(i:location; exp:type);whose execution at location j consists of inserting the value of exp in thequeue j of location i, and:get_type(j:location; var x:type);whose execution at location i consists of waiting if queue j is empty, andelse, of assigning the head of the queue to x.Note that the queue mechanism and the fact that puts and gets areinserted in convenient order allow messages not to identify the transmit-ted values, but only the sending and destination locations. The distributedprograms are well synchronized, deadlock free, and meet the functional se-mantics of Lustre6. Experiments also show that this method avoids dif-�cult distributed debugging problems. However, accurate bounds on thetransition times are di�cult to get, and their evaluation constitutes a realproblem.5.3 Hardware issuesThe adequacy of Lustre for the description of digital circuits has beenshown in several papers [HLP86, HP86, TP90]. Moreover, it can be expectedthat circuit proof and validation may bene�t from Lustre proof techniques.Another interesting issue is hardware design from boolean Lustre speci�-cations and descriptions. Some work on this topic is currently undertaken incooperation with Digital Equipment \Paris Research Laboratory" [Roc89].The idea is to implement on hardware the network of operators correspond-ing to the program, and successful achievements have been obtained in thisdirection, using \programmable active memory" circuits [BRV90].6This also applies to Esterel since the input of the tool is an OC program.33

www.manaraa.com

6 ConclusionIn this paper, the Lustre language, its main applications, and its associ-ated tools have been presented. As concluding remarks, we will comparethe Lustre approach with some alternative approaches, from both pro-gramming language and veri�cation points of view.6.1 Related programming languages6.1.1 Data
owThe data
ow model has been a basis of several programming languages,for instance [AW85, Gra82, BFM84, Bro89], and it has been given a niceformal de�nition by Kahn in [Kah74]. When trying to locate Lustre withinthe data
ow world, it looks very close to Lucid from a syntactical point ofview. This similarity is not casual since Lucid was the �rst main referencein the design of Lustre. However, the �nal language is quite di�erent fromits model. This is due to the choice of the Kahn model as the basic onefor Lustre: in this model, newly computed values can only be appendedat the end of a sequence of already computed values, while Lucid modelallows them to be appended anywhere in the sequence. This raises a lot ofproblems when e�cient execution mechanisms are required, and it poorlymeets the point of view of reactive systems. Thus, Lustre can be �rstseen as some restriction of Lucid to the Kahn model. But the latter soonappeared still too general when bounded memory and bounded reaction timewere required. Clearly, recursive node call had to be forbidden, but also theuse of sampling and blocking operators had to be strictly restricted for thatpurpose. This originated the concept of Lustre clocks which is the �naldistinguishing feature of the language.6.1.2 SignalAnother language quite similar to Lustre is Signal (see this issue), andcomparing both is not an easy task. A main issue here is their distinctsemantical model; in our opinion Signal does not belong to the Kahn fam-ily of languages, which is based on functions over sequences, and on func-tional composition, but on a concept of \programming by constraints": eachSignal construct denotes a �nite-memory relation between \hiatonised" se-quences, and a program is the intersection of such relations. A program hasa bounded memory but it can be relational (i.e., non deterministic), and the34

www.manaraa.com

object of Signal clock calculus consists of �nding an execution scheme suchthat the program be deterministic and deadlock-free. The free use of hiatons(i.e., \absent" data symbols) in the semantics makes Signal a more pow-erful language than Lustre in the sense that the internal clock of programcan be faster than the inputs faster clock. In our opinion, the drawback ofthe approach lies in the fact that the clock calculus is much more complex,and can hardly be mentally performed by a programmer.6.1.3 Imperative synchronous languagesMost synchronous models and languages are imperative ones | e.g., SCCS [Mil83],Esterel, Sml, Statecharts | and therefore their programming style isvery di�erent. Comparison experiments undertaken with Esterel showedthat some problems could �t better with the imperative style, while othersdid not. This seems to indicate that a good reactive programming toolboxshould o�er the possibility of mixing both approaches. As both languagesshare many tools in common, this may become a practical objective in thefuture.It should also be noted that the data-
ow aspect of Lustre makes it lessdependent on synchronous execution schemes than imperative languages.For instance a denotational semantics of Lustre is given in [Ber86], whichdoes not impose a synchronous execution. This may open the door to manyasynchronous execution schemes together with their semantical interpreta-tion.6.2 Proof techniquesThe use of Lustre as a language for expressing program properties allows itto be compared with so-called \real-time" logics [MM84, SMSV83, JM86,AH94]. These logics are mainly obtained by adding a quantitative timedimension to ordinary temporal logics where time is only seen as an orderingof events. Our proposal di�ers in that we remain within the framework oftemporal logics, and consider time as a given external event. This presentstwo advantages: �rst, the logic does not grow in complexity, and it allows amultiform concept of time to be handled. On the same topic, we have alsostressed in the paper the interest of using the same language for both writingprograms, and expressing properties to be satis�ed by these programs.Concerning proof techniques, we �rst began by considering inductivemethods, based on an axiomatic approach. Though some work has been35

www.manaraa.com

done in that direction [CPHP87], it soon appeared that methods based onstate enumeration (\model checking") could be more e�cient. Several im-provements of the method in the particular case of Lustre are described inthe paper.Acknowledgments: Many people have been involved in the project: Jean-Louis Bergerand and Eric Pilaud played a great part in the language de�ni-tion, John Plaice de�ned and implemented the Lustre-V2 compiler, Anne-C�ecile Glory and Farid Ouabdesselam were involved in the work on programspeci�cation and proof within the framework of a contract with Merlin-Gerincompany.The Lustre project received constant attention and help from G�erardBerry and the Esterel team. In particular, we are indebted to them for thecompiling technique of Lustre. We are also indebted to Albert Benvenistefor its energy spent in promoting synchronous programming. Finally, wethank Costas Courcoubetis and the referees for their careful rereading of themanuscript.References[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model checking of real-time systems. In Fifth IEEE Symposium on Logic in ComputerScience, Philadelphia, 1990.[AH94] R. Alur and T.A. Henzinger. A really temporal logic. JACM,41(1), January 1994.[AW85] E. A. Ashcroft and W. W. Wadge. Lucid, the data-
ow pro-gramming language. Academic Press, 1985.[BCP88] B. Buggiani, P. Caspi, and D. Pilaud. Programming distributedautomatic control systems: a language and compiler solution.Technical Report SPECTRE L4, IMAG, Grenoble, Grenoble,July 1988.[Ber86] J-L. Bergerand. Lustre: un langage d�eclaratif pour le tempsr�eel. Thesis, Institut National Polytechnique de Grenoble,Grenoble, France, 1986. 36

www.manaraa.com

[Ber89] G. Berry. Real time programming: Special purpose or generalpurpose languages. In IFIP World Computer Congress, SanFrancisco, 1989.[BFH90a] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimalmodel generation. In R. Kurshan, editor, International Work-shop on Computer Aided Veri�cation, Rutgers, June 1990.[BFH90b] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. On the veri-�cation of safety properties. Technical Report SPECTRE L12,IMAG, Grenoble, Grenoble, March 1990.[BFM84] S. A. Babiker, R. A. Fleming, and R. E. Milne. A tutorial forlts. RR 225. 84. 1, Standard Telecommunication Laboratories,1984.[BL85] D. Borrione and C. Le Faou. Overview of the cascade multi-level hardware description language and its mixed mode simula-tion mechanisms. In Computer Hardware Description Languagesand Their Applications. Elsevier Science, North Holland, 1985.[Bro89] M. Broy. Functional speci�cation of time sensitive communi-cating systems. In J.W. de Bakker, W.-P. de Roever, andG. Rozemberg, editors, REX Workshop on Stepwise Re�ne-ment of Distributed Systems, Models, Formalisms, Correctness.LNCS 430, Springer Verlag, May 1989.[BRV90] P. Bertin, D. Roncin, and J. Vuillemin. Introduction to pro-grammable active memories. In J. McCanny, J. McWhirter, andE. Swartzlander, editors, Systolic Array Processors. Prentice-Hall, 1990.[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic ver-i�cation of �nite-state concurrent systems using temporal logicspeci�cations. ACM TOPLAS, 8(2), 1986.[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre:a declarative language for programming synchronous systems.In 14th ACM Symposium on Principles of Programming Lan-guages, Munchen, January 1987.37

www.manaraa.com

[CVWY90] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yanakakis. Mem-ory e�cient algorithms for the veri�cation of temporal proper-ties. In R. Kurshan, editor, International Workshop on Com-puter Aided Veri�cation, Rutgers, June 1990.[Fer88] J.-C. Fernandez. Aldebaran : un syst�eme de v�eri�cationpar r�eduction de processus communicants. Thesis, Universit�eJoseph Fourier, Grenoble, Grenoble, France, 1988.[Glo89] A-C. Glory. V�eri�cation de propri�et�es de programmes
ots dedonn�ees synchrones. Thesis, Universit�e Joseph Fourier, Greno-ble, Grenoble, France, December 1989.[Gra82] J. R. Mc Graw. The val language: Description and analysis.ACM TOPLAS, 4(1), January 1982.[HLP86] N. Halbwachs, A. Lonchampt, and D. Pilaud. Describing anddesigning circuits by means of a synchronous declarative lan-guage. In IFIP Working Conference \From HDL DescriptionsTo Guaranteed Correct Circuit Designs", Grenoble, September1986.[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. An experience in prov-ing regular networks of processes by modular model checking.Acta Informatica, 29(6/7), 1992.[Hol87] G. J. Holzmann. On limits and possibilities of automated proto-cols analysis. In IFIP WG-6.1 7th. International Conference onProtocol Speci�cation, Testing and Veri�cation, Zurich, 1987.North Holland.[HP85] D. Harel and A. Pnueli. On the development of reactive systems.In Logic and Models of Concurrent Systems, NATO AdvancedStudy Institute on Logics and Models for Veri�cation and Spec-i�cation of Concurrent Systems. Springer Verlag, 1985.[HP86] N. Halbwachs and D. Pilaud. Use of a real-time declarative lan-guage for systolic array design and simulation. In InternationalWorkshop on Systolic Arrays, Oxford, July 1986.[HPOG89] N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.C. Glory.Specifying, programming and verifying real-time systems, using38

www.manaraa.com

a synchronous declarative language. In Workshop on AutomaticVeri�cation Methods for Finite State Systems, Grenoble, Greno-ble, June 1989. LNCS 407, Springer Verlag.[JM86] F. Jahanian and A.K. Mok. Safety analysis of timing propertiesin real-time systems. IEEE Transactions on Software Engineer-ing, SE-2, 1986.[Kah74] G. Kahn. The semantics of a simple language for parallel pro-gramming. In IFIP 74. North Holland, 1974.[Mil83] R. Milner. Calculi for synchrony and asynchrony. TCS, 25(3),July 1983.[MM84] B. Moszkowski and Z. Manna. Reasoning in interval temporallogic. In Workshop on Logics of Programs. LNCS 164, SpringerVerlag, 1984.[PH88] D. Pilaud and N. Halbwachs. From a synchronous declarativelanguage to a temporal logic dealing with multiform time. InM. Joseph, editor, Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, Warwick, September 1988.LNCS 331, Springer Verlag.[Pla88] J. A. Plaice. S�emantique et compilation de Lustre, un langaged�eclaratif synchrone. Thesis, Institut National Polytechnique deGrenoble, Grenoble, France, 1988.[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Symp. onthe Foundations of Computer Science, Providence R.I., 1977.IEEE.[PS87] J. A. Plaice and J-B. Saint. The Lustre-Esterel portableformat. Unpublished report, INRIA, Sophia Antipolis, 1987.[Ray88] P. Raymond. Compilation s�epar�ee de programmes Lustre.Technical Report SPECTRE L5, IMAG, Grenoble, Grenoble,June 1988.[Roc89] F. Rocheteau. Programmation d'un circuit massivement par-all�ele �a l'aide d'un langage d�eclaratif synchrone. Technical Re-port SPECTRE L10, IMAG, Grenoble, June 1989.39

www.manaraa.com

[RRSV87] J. L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Veri�ca-tion in xesar of the sliding window protocol. In IFIP WG-6.17th. International Conference on Protocol Speci�cation, Testingand Veri�cation, Zurich, 1987. North Holland.[RS89] V. Roy and R. de Simone. An autograph primer. TechnicalReport INRIA, Sophia-Antipolis, May 1989.[SMSV83] R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. An intervallogic for higher-level temporal reasonning: language de�nitionand examples. Research Report CSL-138, Computer ScienceLab. , SRI International, February 1983.[TP90] G. Thuau and D. Pilaud. Using the declarative languageLustre for circuit veri�cation. In Workshop on Designing Cor-rect Circuits, Oxford, September 1990.[Ver86] D. Vergamini. Veri�cation by means of observational equiva-lence on automata. Technical Report 501, INRIA, 1986.

40

www.manaraa.com

41

